### applyMatrix()

#### Description

Multiplies the current matrix by the one specified through the parameters. This is very slow because it will try to calculate the inverse of the transform, so avoid it whenever possible. The equivalent function in OpenGL is glMultMatrix().

#### Examples

• size(400, 400, P3D);
noFill();
translate(200, 200, 0);
rotateY(PI/6);
stroke(153);
box(140);
// Set rotation angles
float ct = cos(PI/9.0);
float st = sin(PI/9.0);
// Matrix for rotation around the Y axis
applyMatrix(  ct, 0.0,  st,  0.0,
0.0, 1.0, 0.0,  0.0,
-st, 0.0,  ct,  0.0,
0.0, 0.0, 0.0,  1.0);
stroke(255);
box(200);

#### Syntax

• applyMatrix(source)
• applyMatrix(n00, n01, n02, n10, n11, n12)
• applyMatrix(n00, n01, n02, n03, n10, n11, n12, n13, n20, n21, n22, n23, n30, n31, n32, n33)

#### Parameters

• n00(float)numbers which define the 4x4 matrix to be multiplied
• n01(float)numbers which define the 4x4 matrix to be multiplied
• n02(float)numbers which define the 4x4 matrix to be multiplied
• n10(float)numbers which define the 4x4 matrix to be multiplied
• n11(float)numbers which define the 4x4 matrix to be multiplied
• n12(float)numbers which define the 4x4 matrix to be multiplied
• n03(float)numbers which define the 4x4 matrix to be multiplied
• n13(float)numbers which define the 4x4 matrix to be multiplied
• n20(float)numbers which define the 4x4 matrix to be multiplied
• n21(float)numbers which define the 4x4 matrix to be multiplied
• n22(float)numbers which define the 4x4 matrix to be multiplied
• n23(float)numbers which define the 4x4 matrix to be multiplied
• n30(float)numbers which define the 4x4 matrix to be multiplied
• n31(float)numbers which define the 4x4 matrix to be multiplied
• n32(float)numbers which define the 4x4 matrix to be multiplied
• n33(float)numbers which define the 4x4 matrix to be multiplied

• void